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T:e trecry .t dynamic programming (s applied t. a class
of problems inv lving maximization cver ciscrete sets. The
scluticn {8 mace tc depend c¢cn tne gcluticn of & class cf

fincticnal equatiuns.
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NOTLS ON THE THEORY OF DYNAMIC PROGRAMMING—IV
MAXIMIZATION OVER DISCRET: StTS

Ql. Intr.ducticn

A pr.blem of frequent cccurrence 1s that ¢f determining

tne maximum of a function P(x,,xa,...,xN) sub ject t. the

constrainte
(1) (a) Gi(x;,xg,...,xN) < cqr 121,2,...,K
(b) x, €5,

wi.ere Si 18 a discrete, usually finite, set. Tne mcst impcrtant
case 18 that where each S1 is a finite set ¢f integers, and an

interestin, sub—case {8 that where x1 = 0 or 1.

A particular class cf protlems cf tnis type concerns

tr.e maximization ot

N
(2) F(") = p) Fi(xl)'
1=1
over the eet of X, conetralned by tne relati.ns
N
(3) (a) 2 G, .(x.) ¢ ¢y 121,2,..0,K
u'-l v v
€ -
(b) Xy Si' {=1,2, K,
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Even in the case where the Pi and GiJ are linear functions

of the x this problem at the moment escapes any of the

1'
standard computationsal algoritnms of linear programming, such

as the simplex method of G Dantzig.

We shall show that this problem may be treated by means
cf the functional equation technique of the theory of dynamic
programming, (1), and that this technique ylelds a very simple
computaticnal scluticn whenever the number of constraints is
small.

We shall also indicate the spplication of the method
to a problem involving mutually exclusive activities. Here

we have an additional ccnstraint of the form
(«) XXy, = O.

§2. Functional Equation

Let us define the sequence of functions

N
(1) fu(ci,c@ye--4Cy) = Max Z PF,(x,),
N L U

where tne x, are subject to the constraints cf (1.3). Then

(2) fi(ci,ca,..vycy) = Max Fi(xy)
X3
wHere
(3) (a) Gaa(xy) < cayeeny Gy lxy) < g

(b) x; £ S,.
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Applying the principle of optimality, we obtain the recurrence

relation
(4) fN(c"c"""cx)'"i: (P (xy) ey 1 (caGy (xy), oo pey—Gpey (x0))],
where
(5) (a) O y(xg)gen, oo, Gyylxy)gey.
(b) xy e Sy-
§3. Example

N
Consider the problem of determining the maximum of LN(x)-z ay Xy
{=]

subject to the constraints

N
(1) (a) Z byx, < ¢,
i=]
(b) x, =0orl,
where ai,b1 > 0.
Here
(2) f‘(C) = a4y, C 2 b,
= 0' c < bl'
and
(3) fylc) =  Max [aNxN+fN_l(c—bNxN)], c > by
Xy * 0,1

rN_l(c), c < by-



P-721
8-18-55
=4

$4. Discussion

The functions fN(c) may now be computed with ease, on
either a digital or hand computer, depending upon the size of
the system, starting with the known value f,(c).

To give an example, suppose that N « 50 and ¢ = 200, with
the 8y b1 integers ranging between 1 and 10. The naive
approach involves the testing of 250 sets of values, {.e.,
all poesible combinations of accept or reject. Since 250 -
1050('30) - 10“'5, this is a considerable task. Conventional
linear programming techniques fail because of the restriction
that the Xy be integral. Por the case where N = 50, a roundoff
of the linear programming solution may cause considerable error.

Using the above method, we must compute 50 functions
{tu(c),jeach containing 200 entries, ¢ =1, 2, 3, --*. If

the a, and b, are {rrational, we may have to refine the c—grid

1 i
in order not to introduce round—off errors of importance. An
important point to note is that doubling the size of N will
double the computational time, which 18 to say that the time
required for computing the solution in this fashion is propor-
tional to N, rather than dependent upon N in some exponential
fashion, as in ordinary search methods.

In return for tne labor expended in computing the sequence
1rN(c),j one has all the advantages of a "sensitivity analysis”.

It 1s easy to trace the influence of ¢ and N upon the maximum

value and the behavior of tne maximizing xy = xN(c).
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Let us now discuss in more detail the remark we made in

the introduction stating that this technique is, at the present time,

restricted to problems involving a small number of constraints.
Consider a cargo-handling problem in which we have a
number of items possessing values Vi welghts v, and sizes 8, -
We wish to maximize the value of the cargo carried, subject
to weight restriction w and a volume restriction s.
The mathematical problem 1s that of maximizing
N

(1) L(x) = Z x
1el

g ¥/

subject to the restrictions
N

(2) (a) Z x.w < w,
i=]
N

(b) £ x,8, <8
1l 11 =

(C) xl'on 1, 2,
“efining
(3) fy(w, s) = Max L(x),
we readily obtain
- 8 -
1

(4) faw, 8) =vaMin ( C7 0, D d )

fk(w, 8) = N;x [}kxk + rk_l(w - X W ., 8 - xk'k)]'
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where R is the set

J ).

(5) x, =0,1,2, *+-, mn ( [é]. C

x =

Taking the parameters Weo 8y and vy to be integers, we will,
in general, be required to N functions of two variables,
tabulated at the points of 4 grid w = 0, 1, 2, °-°, W,

8 =20,1, 2, <+, S. If W and S are of the order of magnitude
of 100, this requires 10“ values. This 1s still within the
capability of modern machines.

It is clear, however, that one additional constraint of
o6

the same type puts us in the 1 range. This exceeds the

capability of any present day machine.
If, on the other hand, there are a large number of con—-

straints, each with 2 small range, then the method is useful.

§5. Example—Mutually Exclusive Activities

Consider the problem of the preceding section under the

additional constraint
(1) xixi*l -o, 1.1, 2’ '..’N_l

Define the sequence of functions

N
(2) rN(c, b) = ?:? 151 a,x,

where the X, are subject to the constraints

(3) (a) x_. b =0, beOorl
N
(b) Z b,x, < ¢c.

i=1
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Then we have the recurrence relation
(») fyle, b) = Max [ax. + £,  (c - byxy; xy)]
xN-O,l
[ ]

To determine the solution we must compute the double sequence

{f“(c, 0), fu(c, l)i.
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